Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Mind (Camb) ; 8: 462-482, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665546

RESUMO

There are important differences between central and peripheral vision. With respect to shape, contours retain phenomenal sharpness, although some contours disappear if they are near other contours. This leads to some uniform textures to appear non-uniform (Honeycomb illusion, Bertamini et al., 2016). Unlike other phenomena of shape perception in the periphery, this illusion is showing how continuity of the texture does not contribute to phenomenal continuity. We systematically varied the relationship between central and peripheral regions, and we collected subjective reports (how far can one see lines) as well as judgments of line orientation. We used extended textures created with a square grid and some additional lines that are invisible when they are located at the corners of the grid, or visible when they are separated from the grid (control condition). With respects to subjective reports, we compared the region of visibility for cases in which the texture was uniform (Exp 1a), or when in a central region the lines were different (Exp 1b). There were no differences, showing no role of objective uniformity on visibility. Next, in addition to the region of visibility we measured sensitivity using a forced-choice task (line tilted left or right) (Exp 2). The drop in sensitivity with eccentricity matched the size of the region in which lines were perceived in the illusion condition, but not in the control condition. When participants were offered a choice to report of the lines were present or absent (Exp 3) they confirmed that they did not see them in the illusion condition, but saw them in the control condition. We conclude that mechanisms that control perception of contours operate differently in the periphery, and override prior expectations, including that of uniformity. Conversely, when elements are detected in the periphery, we assign to them properties based on information from central vision, but these shapes cannot be identified correctly when the task requires such discrimination.

2.
Proc Biol Sci ; 291(2018): 20232867, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38471562

RESUMO

A delayed foveal mask affects perception of peripheral stimuli. The effect is determined by the timing of the mask and by the similarity with the peripheral stimulus. A congruent mask enhances performance, while an incongruent one impairs it. It is hypothesized that foveal masks disrupt a feedback mechanism reaching the foveal cortex. This mechanism could be part of a broader circuit associated with mental imagery, but this hypothesis has not as yet been tested. We investigated the link between mental imagery and foveal feedback. We tested the relationship between performance fluctuations caused by the foveal mask-measured in terms of discriminability (d') and criterion (C)-and the scores from two questionnaires designed to assess mental imagery vividness (VVIQ) and another exploring object imagery, spatial imagery and verbal cognitive styles (OSIVQ). Contrary to our hypotheses, no significant correlations were found between VVIQ and the mask's impact on d' and C. Neither the object nor spatial subscales of OSIVQ correlated with the mask's impact. In conclusion, our findings do not substantiate the existence of a link between foveal feedback and mental imagery. Further investigation is needed to determine whether mask interference might occur with more implicit measures of imagery.


Assuntos
Imaginação , Percepção Visual , Fóvea Central , Inquéritos e Questionários , Personalidade
3.
PLoS One ; 18(10): e0291275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796804

RESUMO

Visual object recognition was traditionally believed to rely on a hierarchical feedforward process. However, recent evidence challenges this notion by demonstrating the crucial role of foveal retinotopic cortex and feedback signals from higher-level visual areas in processing peripheral visual information. The nature of the information conveyed through foveal feedback remains a topic of debate. To address this, we conducted a study employing a foveal mask paradigm with varying stimulus-mask onset asynchronies in a peripheral same/different task, where peripheral objects exhibited different degrees of similarity. Our hypothesis posited that simultaneous arrival of feedback and mask information in the foveal cortex would lead to neural contamination, biasing perception. Notably, when the two peripheral objects were identical, we observed a significant increase in the number of "different" responses, peaking at approximately 100 ms. Similar effect was found when the objects were dissimilar, but with an overall later timing (around 150 ms). No significant difference was found when comparing easy (dissimilar objects) and difficult trials (similar objects). The findings challenge the hypothesis that foveation planning alone accounts for the observed effects. Instead, these and previous observations support the notion that the foveal cortex serves as a visual sketchpad for maintaining and manipulating task-relevant information.


Assuntos
Reconhecimento Visual de Modelos , Córtex Visual , Retroalimentação , Reconhecimento Visual de Modelos/fisiologia , Percepção Visual/fisiologia , Fóvea Central/fisiologia , Córtex Visual/fisiologia , Estimulação Luminosa
4.
Sci Rep ; 12(1): 19952, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402850

RESUMO

Peripheral object discrimination is hindered by a central dynamic mask presented between 150 and 300 ms after stimulus onset. The mask is thought to interfere with task-relevant feedback coming from higher visual areas to the foveal cortex in V1. Fan et al. (2016) supported this hypothesis by showing that the effect of mask can be further delayed if the task requires mental manipulation of the peripheral target. The main purpose of this study was to better characterize the temporal dynamics of foveal feedback. Specifically, in two experiments we have shown that (1) the effect of foveal noise mask is sufficiently robust to be replicated in an online data collection (2) in addition to a change in sensitivity the mask affects also the criterion, which becomes more conservative; (3) the expected dipper function for sensitivity approximates a quartic with a global minimum at 94 ms, while the best fit for criterion is a quintic with a global maximum at 174 ms; (4) the power spectrum analysis of perceptual oscillations in sensitivity data shows a cyclic effect of mask at 3 and 12 Hz. Overall, our results show that foveal noise affects sensitivity in a cyclic manner, with a global dip emerging earlier than previously found. The noise also affects the response bias, even though with a different temporal profile. We, therefore, suggest that foveal noise acts on two distinct feedback mechanisms, a faster perceptual feedback followed by a slower cognitive feedback.


Assuntos
Fóvea Central , Córtex Visual , Fóvea Central/fisiologia , Córtex Visual/fisiologia , Córtex Cerebral , Retroalimentação
5.
Restor Neurol Neurosci ; 39(1): 45-59, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33554927

RESUMO

BACKGROUND: Several visual functions are impaired in patients with oculocutaneous albinism (OCA) associated to albinistic bilateral amblyopia (ABA). OBJECTIVE: In this study, we aimed at exploring whether perceptual learning (PL) can improve visual functions in albinism. METHOD: Six patients and six normal sighted controls, were trained in a contrast detection task with lateral masking. Participants were asked to choose which of the two intervals contained a foveally presented low-contrast Gabor patch. Targets were presented between higher contrast collinear flankers with equal spatial frequency. When increasing target-to-flanker distance, lateral interactions effect normally switches from inhibition to facilitation, up to no effect. RESULTS: Our findings showed that before PL, only controls showed facilitation. After PL, results suggest that facilitatory lateral interactions are found both in controls as well as in albino patients. These results suggest that PL could induce higher processing efficiency at early cortical level. Moreover, PL positive effect seems to transfer to higher-level visual functions, but results were not very consistent among tasks (visual acuity, contrast sensitivity function, hyperacuity and foveal crowding). CONCLUSIONS: Although a small sample size was tested, our findings suggest a rehabilitative potential of PL in improving visual functions in albinism.


Assuntos
Albinismo , Ambliopia , Ambliopia/terapia , Sensibilidades de Contraste , Humanos , Estimulação Luminosa , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...